Sains Malaysiana 53(11)(2024): 3629-3637
http://doi.org/10.17576/jsm-2024-5311-07
Pengambilan
Makanan, Kadar Pertumbuhan dan Kecekapan Penukaran Makanan bagi Ikan Inggu Amphiprion ocellaris menggunakan Diet Buatan
(Feed
Intake, Growth Rate and Feed Conversion Efficiency for Clownfish Amphiprion
ocellaris using an Artificial Diet)
NURAIN
NAZIRATUL AKMA MOHAMAD DAUD1,*, MOHAMAD SAUPI ISMAIL2 & KHOO MEI LING1,3
1Faculty of Earth Science
and Environment, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Fisheries Research Institute (FRI), Batu Maung, 11960
Pulau Pinang, Malaysia
3Marine Ecosystem Research
Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received:
30 April 2024/Accepted: 7 August 2024
Abstrak
Ikan inggu yang berwarna-warni
dan interaksinya dengan buran laut telah menarik perhatian penggemar ikan laut
di seluruh dunia menyebabkan permintaannya semakin meningkat. Namun, kebanyakan
ikan inggu yang dipasarkan ditangkap daripada kawasan semula jadi. Ternakan
ikan hiasan marin tidak popular dalam kalangan penternak tempatan kerana kos
makanan yang tinggi dan jumlah pemakanan yang optimum kurang diketahui bagi
memastikan ikan tersebut sihat dan membesar. Justeru, kajian ini memberi
penekanan kepada penentuan kekerapan dan kadar pengambilan makanan yang optimum
untuk Amphiphion ocellaris, nisbah penukaran makanan (FCR) serta kadar
tumbesaran menggunakan diet buatan. Dalam kajian ini, empat frekuensi pemberian
makanan berbeza (1 hingga 4 kali sehari) kepada Amphiprion ocellaris telah dijalankan bagi menentukan kekerapan pemakanan optimum. Ikan diberi makan
hingga kenyang setiap kali dan jumlah yang dimakan
direkodkan. Peningkatan panjang ikan direkodkan setiap dua minggu.
Sepanjang tempoh 24 minggu kajian, pertambahan panjang ikan dikesan setiap dua
minggu. Semua frekuensi pemberian makanan menghasilkan
corak tumbesaran secara beransur-ansur. Kekerapan pemberian makanan tiga kali
menunjukkan pertumbuhan panjang tertinggi dengan 0.388 cm diikuti dua kali
dengan 0.356 cm. Ikan yang diberi makan tiga kali sehari menunjukkan nilai FCR
yang terendah iaitu 3.146 + 2.370 (p<0.05) dan jumlah makanan diambil paling minimum iaitu
93.229 ± 5.938 g. Kesimpulannya, kekerapan pemberian makanan yang optimum untuk
ikan inggu adalah tiga kali sehari untuk menghasilkan peningkatan panjang
tertinggi dan jumlah pengambilan makanan terendah.
Kata kunci: Ikan hiasan marin; kekerapan pemberian
makanan; nisbah penukaran makanan; tumbesaran
Abstract
The colourful clownfish and its intriguing
interactions with sea anemones have caught the attention of marine fish
hobbyists worldwide, increasing its demand. However, most supplies are wild
caught. Marine ornamental fish farming is unpopular among local farmers because
of the high cost of feeding and lack of knowledge on optimum feeding amounts to
keep the fish healthy. So, this study focuses on determining the frequency and
optimal food intake rate for Amphiphion ocellaris, the food conversion
ratio (FCR) and growth rate using an artificial diet. In this study, four
feeding frequencies (1, 2, 3, and 4 times daily) were tested to determine the
optimum feeding frequency using artificial food. Fishes were fed to satiation
each time, and the amount eaten was recorded. The growth in length was measured
every two weeks. During the 24 weeks of the study period, increment in fish
length was detected every two weeks. All feeding frequencies showed increasing
growth gradually. Three times feeding frequency showed the highest growth in
length followed by two times feeding frequency with 0.388 cm and 0.356 cm,
respectively (p<0.05). Fishes fed three times daily showed the lowest value
of the FCR and the minimum amount of food taken at 3.146 + 2.370 and 93.229 ± 5.938 g, respectively.
In conclusion, three times a day is the optimum feeding frequency for clownfish
with the highest growth length and lowest
food intake.
Keywords: Feeding frequency; food conversion ratio;
growth; marine ornamental fish
REFERENCES
Árnason,T., Björnsson, B. & Steinarsson, A. 2009. Allometric
growth and condition factor of Atlantic cod (Gadus morhua) fed to
satiation: Effects of temperature and body weight. Journal of Applied
Ichthyology 4(25): 401-406.
Bee Hui Soh, Lim Ghee-Thean & Soo Y. Chua. 2022. Is
Malaysian fish export competitive compared with that of other ASEAN
countries? International Journal of Economics, Management and
Accounting 30(1): 175-201.
Buston, P. 2003. Size and growth modification in clownfish. Nature 424(6945): 145-146.
Buston, P.M. & Elith, J. 2011. Determinants of
reproductive success in dominant pairs of clownfish: A boosted regression tree
analysis. Journal of Animal Ecology 80(3): 528-538.
Campelo, D.A.V., Marques, M.H.C., Marim, O.P., de Moura,
L.B., Eiras, B.J.C.F., Brabo, M.F. & Veras, G.C. 2019. Effects of feeding rates and
feeding frequencies on growth performance, uniformity of the batch and survival
rate of Amazon ornamental fish larvae. International Journal of
Fisheries and Aquaculture 11(2): 23-28.
Casadevall, M., Delgado Sureda, E., Colleye, O., Ber
Monserrat, S. & Parmentier, E. 2009. Histological study of the sex-change
in the skunk clownfish Amphiprion akallopisos. The Open Fish Science Journal 2: 55-58.
Cho, C., Slinger, S. & Bayley, H. 1982. Bioenergetics of
salmonid fishes: Energy intake, expenditure and productivity. Comparative Biochemistry Physiology Part B:
Comparative Biochemistry 73(1): 25-41.
Chambel, J., Severiano, V., Baptista, T., Mendes, S., &
Pedrosa, R. (2015). Effect of stocking density and different diets on growth of Percula Clownfish, Amphiprion
percula (Lacepede, 1802). Springerplus 4: 1-7.
Fan, X., Li, M., Yuan, L., Lai, H., Song, M., Wang, R. &
Zheng, R. 2017. Effects of feeding frequency on the enzymes and genes involved
in oxidative stress in juvenile yellow catfish Pelteobagrus fulvidraco (Richardson) exposed to ammonia. Aquaculture Research 12(48): 5874-5882.
Fitriadi, R., Palupi, M. & Nurwahyuni, R. 2022. Growth
performance and feed utilization of tilapia (Oreochromis niloticus) fed
with diets containing animal protein source from expired sausage. Sains
Malaysiana 51(9): 2763-2774.
Fu, S.J., Xie, X.J. & Cao, Z.D. 2005. Effect of
fasting on resting metabolic rate and postprandial metabolic response in Silurus
meridionalis. J. Fish Biol. 67(1): 279-285.
Gandotra, R., Parihar, D.S., Koul, M., Gupta, V. &
Kumari, R. 2014. Effect of varying dietary protein levels on growth, feed conversion
efficiency (FCE) and feed conversion ratio (FCR) of Catla catla (HAM.)
fry. Journal of International Academic Research for Multidisciplinary 2(1): 28-35.
Gao, B., Zhang, X., Zhang, Y., Li, S., Lu, L., Xu, D. &
Liu, X. 2022. Effects of dietary carbohydrate levels on the growth,
glycometabolism, antioxidant capacity and metabolome of largemouth bass (Micropterus
salmoides). Aquaculture Research 10(53): 3748-3758.
Hassan, H.U., Ali, Q.M., Khan, W., Masood, Z., Abdel-Aziz,
M.F.A., Shah, M.I.A., Gabol, K., Wattoo, J., Mahmood Chatta, A., Kamal, M.,
Zulfiqar, T. & Hossain, M.Y. 2021. Effect of feeding frequency as a rearing
system on biological performance, survival, body chemical composition and
economic efficiency of Asian seabass Lates
calcarifer (Bloch, 1790) reared under controlled environmental conditions. Saudi Journal of Biological Sciences 28(12): 7360-7366.
Hobson, E.S.
1972. Activity of Hawaiian reef fishes during the evening and morning
transitions between daylight and darkness. Fishery Bulletin 70(3):
715-740.
Ismail, M.S., Khoo, M.L., Ma’mor, D.B. & Christianus, A.
2023. Breeding and hybridization of clownfish Amphiprion ephippium x Amphiprion
melanopus in captivity. Journal of Tropical Agricultural Science 46(1): JTAS-2536-2022.
Jumatli, A. & Ismail, M.S. 2021. Promotion of sustainable
aquaculture in Malaysia. In Proceedings of the International Workshop on the
Promotion of Sustainable Aquaculture, Aquatic Animal Health and Resource
Enhancement in Southeast Asia, 25-27 June 2019, Tigbauan, Iloilo City,
Philippines edited by Aya, F.A., de la Peña, L.D., Salayo, N.D. &
Tendencia, E.A. Tigbauan, Iloilo, Philippines: Southeast Asian Fisheries
Development Center. hlm. 31-40.
Kaiser, H., Endemann, F. & Paulet, G. 2003. A comparison
of artificial and natural foods and their combinations in the rearing of
goldfish, Carassius Auratus (L.). Aquaculture Research 34: 943-950.
Kearney, M.R.
& Jusup, M. 2023. Comment on “Metabolic scaling is the product of
life-history optimization”. Science 380: 6643.
Keri, A.I., Aziz, A. & Abol-Munafi, A.B. 2011. Condition
factor as an indicator of growth and feeding intensity of Nile tilapia
fingerlings (Oreochromis niloticus)
feed on different levels of maltose. American-Eurasian
Journal of Agricultural and Environmental Sciences 11(4): 559-563.
Khoo, M.L. & Mazlan, A.G. 2014. Estimation of gastric
emptying time (GET) in clownfish (Amphiprion ocellaris) using
x-radiography technique. AIP Proceedings 1614: 624-628.
Khoo, M.L., Das, S.K. & Ghaffar, A.M. 2019. Gastric
emptying and the enzymatic activity in the stomach of Amphiprion ocellaris fed on artificial diet. Sains Malaysiana 48(1): 1-6.
Koeleman, E. 2017. Fish Growth by Adding Reproduction
Inhibitors. https://www.allaboutfeed.net/animal-feed/feed-additives/fish-growth-by-adding-reproduction-inhibitors/
(Diakses pada 26 September 2023).
Lestari, D.F. & Syukriah. 2020. Manajemen stres pada ikan untuk akuakultur berkelanjutan. Jurnal Ahli Muda Indonesia (JAMI) 1(1):
97-105.
Lupatsch, I., Floyd, R., Shields, R. & Snellgrove, D.
2013. Feed requirements for maintenance and growth of anemone clownfish Amphiprion
percula. Isr. J. Aquac. Bamidgeh 65: 1-9.
Madhu, K., Rema, M., Gopakumar, G. & Sasidharan, C.S.
2006. Breeding, larval rearing and seed production of maroon clown Premnas biaculeatus under captive
conditions. Marine Fisheries Information
Service, Technical and Extension Series 190: 1-5.
Militz, T.A. & Foale, S. 2017. The “Nemo Effect”:
Perception and reality of Finding Nemo's impact on the marine aquarium
fisheries. Fish and Fisheries 18(3): 596-606.
Muhamad, N.A. & Mohamad, J. 2012. Fatty acids composition
of selected Malaysian fishes. Sains Malaysiana 41(1): 81-94.
Ntantali, O., Malandrakis, E.E., Abbink, W., Bastiaansen, J.,
Chatzoglou, E., Karapanagiotidis, I.T., Golomazou, E. & Panagiotaki, P.
2023. Effects of short-term intermittent fasting on growth performance, fatty
acids profile, glycolysis and cholesterol synthesis gene expression in European
seabass Dicentrarchus labrax. Fishes 8(12): 582.
Oliveira,
L.K., Pilz, L., Furtado, P.S., Ballester, E.L.C. & de A. Bicudo, Á.J. 2021.
Growth, nutritional efficiency, and profitability of juvenile GIFT strain of
Nile tilapia (Oreochromis niloticus) reared in biofloc system on graded
feeding rates. Aquaculture 541: 736830.
Othman, M.F., Hashim, M., Eim, Y.M., Azmai, M.N.A., Iksan,
N., Ho, G.C. & Merican, Z. 2017. Transforming the aquaculture industry in
Malaysia. World Aquac. 48(2): 16-23.
Pauly, D. 1983. Some simple methods for the assessment of
tropical fish stocks. FAO Fish. Tech. Pap., (234). Food and
Agriculture Organization of the United Nations. hlm. 52.
Rahman, M. & Arifuzzaman, M. 2021. An experiment on
growth performance, specific growth rate (SGR) and feed conversion ratio (FCR)
of rohu (Labeo rohita) and tilapia (Oreochromis niloticus) in
tank based intensive aquaculture system. Int.
J. Aquac. Fish. Sci. 7: 35-41.
Roux, N., Logeux, V., Trouillard, N., Pillot, R., Magré, K.,
Salis, P., Lecchini, D., Besseau, L., Laudet, V. & Romans, P. 2021. A star
is born again: Methods for larval rearing of an emerging model organism, the
false clownfish Amphiprion ocellaris. Journal of Experimental Zoology Part B: Molecular and Developmental
Evolution 336(4): 376-385.
Sahm, A., Almaida-Pagán, P., Bens, M., Mutalipassi, M.,
Lucas-Sánchez, A., De Costa Ruiz, J., Görlach, M. & Cellerino, A. 2019.
Analysis of the coding sequences of clownfish reveals molecular convergence in
the evolution of lifespan. BMC
Evolutionary Biology 19(1): 1-12.
Wood, E.M. 2001. Collection of Coral Reef Fish for
Aquaria: Global Trade, Conservation Issues and Management Strategies.
Herefordshire: Marine Conservation
Society. hlm. 80.
*Corresponding author;
email: meilingkhoo@ukm.edu.my