Sains Malaysiana 53(11)(2024): 3629-3637

http://doi.org/10.17576/jsm-2024-5311-07

 

Pengambilan Makanan, Kadar Pertumbuhan dan Kecekapan Penukaran Makanan bagi Ikan Inggu Amphiprion ocellaris menggunakan Diet Buatan

(Feed Intake, Growth Rate and Feed Conversion Efficiency for Clownfish Amphiprion ocellaris using an Artificial Diet)

 

NURAIN NAZIRATUL AKMA MOHAMAD DAUD1,*, MOHAMAD SAUPI ISMAIL2 & KHOO MEI LING1,3

 

1Faculty of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Fisheries Research Institute (FRI), Batu Maung, 11960 Pulau Pinang, Malaysia

3Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 30 April 2024/Accepted: 7 August 2024

 

Abstrak

Ikan inggu yang berwarna-warni dan interaksinya dengan buran laut telah menarik perhatian penggemar ikan laut di seluruh dunia menyebabkan permintaannya semakin meningkat. Namun, kebanyakan ikan inggu yang dipasarkan ditangkap daripada kawasan semula jadi. Ternakan ikan hiasan marin tidak popular dalam kalangan penternak tempatan kerana kos makanan yang tinggi dan jumlah pemakanan yang optimum kurang diketahui bagi memastikan ikan tersebut sihat dan membesar. Justeru, kajian ini memberi penekanan kepada penentuan kekerapan dan kadar pengambilan makanan yang optimum untuk Amphiphion ocellaris, nisbah penukaran makanan (FCR) serta kadar tumbesaran menggunakan diet buatan. Dalam kajian ini, empat frekuensi pemberian makanan berbeza (1 hingga 4 kali sehari) kepada Amphiprion ocellaris telah dijalankan bagi menentukan kekerapan pemakanan optimum. Ikan diberi makan hingga kenyang setiap kali dan jumlah yang dimakan direkodkan. Peningkatan panjang ikan direkodkan setiap dua minggu. Sepanjang tempoh 24 minggu kajian, pertambahan panjang ikan dikesan setiap dua minggu. Semua frekuensi pemberian makanan menghasilkan corak tumbesaran secara beransur-ansur. Kekerapan pemberian makanan tiga kali menunjukkan pertumbuhan panjang tertinggi dengan 0.388 cm diikuti dua kali dengan 0.356 cm. Ikan yang diberi makan tiga kali sehari menunjukkan nilai FCR yang terendah iaitu 3.146 + 2.370 (p<0.05) dan jumlah makanan diambil paling minimum iaitu 93.229 ± 5.938 g. Kesimpulannya, kekerapan pemberian makanan yang optimum untuk ikan inggu adalah tiga kali sehari untuk menghasilkan peningkatan panjang tertinggi dan jumlah pengambilan makanan terendah.

 

Kata kunci: Ikan hiasan marin; kekerapan pemberian makanan; nisbah penukaran makanan; tumbesaran

 

Abstract

The colourful clownfish and its intriguing interactions with sea anemones have caught the attention of marine fish hobbyists worldwide, increasing its demand. However, most supplies are wild caught. Marine ornamental fish farming is unpopular among local farmers because of the high cost of feeding and lack of knowledge on optimum feeding amounts to keep the fish healthy. So, this study focuses on determining the frequency and optimal food intake rate for Amphiphion ocellaris, the food conversion ratio (FCR) and growth rate using an artificial diet. In this study, four feeding frequencies (1, 2, 3, and 4 times daily) were tested to determine the optimum feeding frequency using artificial food. Fishes were fed to satiation each time, and the amount eaten was recorded. The growth in length was measured every two weeks. During the 24 weeks of the study period, increment in fish length was detected every two weeks. All feeding frequencies showed increasing growth gradually. Three times feeding frequency showed the highest growth in length followed by two times feeding frequency with 0.388 cm and 0.356 cm, respectively (p<0.05). Fishes fed three times daily showed the lowest value of the FCR and the minimum amount of food taken at 3.146 + 2.370 and 93.229 ± 5.938 g, respectively. In conclusion, three times a day is the optimum feeding frequency for clownfish with the highest growth length and lowest food intake.

 

Keywords: Feeding frequency; food conversion ratio; growth; marine ornamental fish

 

REFERENCES

Árnason,T., Björnsson, B. & Steinarsson, A. 2009. Allometric growth and condition factor of Atlantic cod (Gadus morhua) fed to satiation: Effects of temperature and body weight. Journal of Applied Ichthyology 4(25): 401-406.

Bee Hui Soh, Lim Ghee-Thean & Soo Y. Chua. 2022. Is Malaysian fish export competitive compared with that of other ASEAN countries? International Journal of Economics, Management and Accounting 30(1): 175-201.

Buston, P. 2003. Size and growth modification in clownfish. Nature 424(6945): 145-146.

Buston, P.M. & Elith, J. 2011. Determinants of reproductive success in dominant pairs of clownfish: A boosted regression tree analysis. Journal of Animal Ecology 80(3): 528-538.

Campelo, D.A.V., Marques, M.H.C., Marim, O.P., de Moura, L.B., Eiras, B.J.C.F., Brabo, M.F. & Veras, G.C. 2019. Effects of feeding rates and feeding frequencies on growth performance, uniformity of the batch and survival rate of Amazon ornamental fish larvae. International Journal of Fisheries and Aquaculture 11(2): 23-28. 

Casadevall, M., Delgado Sureda, E., Colleye, O., Ber Monserrat, S. & Parmentier, E. 2009. Histological study of the sex-change in the skunk clownfish Amphiprion akallopisos. The Open Fish Science Journal 2: 55-58.

Cho, C., Slinger, S. & Bayley, H. 1982. Bioenergetics of salmonid fishes: Energy intake, expenditure and productivity. Comparative Biochemistry Physiology Part B: Comparative Biochemistry 73(1): 25-41.

Chambel, J., Severiano, V., Baptista, T., Mendes, S., & Pedrosa, R. (2015). Effect of stocking density   and different diets on growth of Percula Clownfish, Amphiprion percula (Lacepede, 1802). Springerplus 4: 1-7.

Fan, X., Li, M., Yuan, L., Lai, H., Song, M., Wang, R. & Zheng, R. 2017. Effects of feeding frequency on the enzymes and genes involved in oxidative stress in juvenile yellow catfish Pelteobagrus fulvidraco (Richardson) exposed to ammonia. Aquaculture Research 12(48): 5874-5882.

Fitriadi, R., Palupi, M. & Nurwahyuni, R. 2022. Growth performance and feed utilization of tilapia (Oreochromis niloticus) fed with diets containing animal protein source from expired sausage. Sains Malaysiana 51(9): 2763-2774.

Fu, S.J., Xie, X.J. & Cao, Z.D. 2005. Effect of fasting on resting metabolic rate and postprandial metabolic response in Silurus meridionalisJ. Fish Biol. 67(1): 279-285.

Gandotra, R., Parihar, D.S., Koul, M., Gupta, V. & Kumari, R. 2014. Effect of varying dietary protein levels on growth, feed conversion efficiency (FCE) and feed conversion ratio (FCR) of Catla catla (HAM.) fry. Journal of International Academic Research for Multidisciplinary 2(1): 28-35.

Gao, B., Zhang, X., Zhang, Y., Li, S., Lu, L., Xu, D. & Liu, X. 2022. Effects of dietary carbohydrate levels on the growth, glycometabolism, antioxidant capacity and metabolome of largemouth bass (Micropterus salmoides). Aquaculture Research 10(53): 3748-3758.

Hassan, H.U., Ali, Q.M., Khan, W., Masood, Z., Abdel-Aziz, M.F.A., Shah, M.I.A., Gabol, K., Wattoo, J., Mahmood Chatta, A., Kamal, M., Zulfiqar, T. & Hossain, M.Y. 2021. Effect of feeding frequency as a rearing system on biological performance, survival, body chemical composition and economic efficiency of Asian seabass Lates calcarifer (Bloch, 1790) reared under controlled environmental conditions. Saudi Journal of Biological Sciences 28(12): 7360-7366.

Hobson, E.S. 1972. Activity of Hawaiian reef fishes during the evening and morning transitions between daylight and darkness. Fishery Bulletin 70(3): 715-740.

Ismail, M.S., Khoo, M.L., Ma’mor, D.B. & Christianus, A. 2023. Breeding and hybridization of clownfish Amphiprion ephippium x Amphiprion melanopus in captivity. Journal of Tropical Agricultural Science 46(1): JTAS-2536-2022.

Jumatli, A. & Ismail, M.S. 2021. Promotion of sustainable aquaculture in Malaysia. In Proceedings of the International Workshop on the Promotion of Sustainable Aquaculture, Aquatic Animal Health and Resource Enhancement in Southeast Asia, 25-27 June 2019, Tigbauan, Iloilo City, Philippines edited by Aya, F.A., de la Peña, L.D., Salayo, N.D. & Tendencia, E.A. Tigbauan, Iloilo, Philippines: Southeast Asian Fisheries Development Center. hlm. 31-40.

Kaiser, H., Endemann, F. & Paulet, G. 2003. A comparison of artificial and natural foods and their combinations in the rearing of goldfish, Carassius Auratus (L.). Aquaculture Research 34: 943-950.

Kearney, M.R. & Jusup, M. 2023. Comment on “Metabolic scaling is the product of life-history optimization”. Science 380: 6643. 

Keri, A.I., Aziz, A. & Abol-Munafi, A.B. 2011. Condition factor as an indicator of growth and feeding intensity of Nile tilapia fingerlings (Oreochromis niloticus) feed on different levels of maltose. American-Eurasian Journal of Agricultural and Environmental Sciences 11(4): 559-563.

Khoo, M.L. & Mazlan, A.G. 2014. Estimation of gastric emptying time (GET) in clownfish (Amphiprion ocellaris) using x-radiography technique. AIP Proceedings 1614: 624-628.

Khoo, M.L., Das, S.K. & Ghaffar, A.M. 2019. Gastric emptying and the enzymatic activity in the stomach of Amphiprion ocellaris fed on artificial diet. Sains Malaysiana 48(1): 1-6.

Koeleman, E. 2017. Fish Growth by Adding Reproduction Inhibitors. https://www.allaboutfeed.net/animal-feed/feed-additives/fish-growth-by-adding-reproduction-inhibitors/ (Diakses pada 26 September 2023).

Lestari,  D.F.  &  Syukriah. 2020. Manajemen  stres  pada  ikan  untuk  akuakultur berkelanjutan.  Jurnal Ahli Muda Indonesia (JAMI) 1(1): 97-105.

Lupatsch, I., Floyd, R., Shields, R. & Snellgrove, D. 2013. Feed requirements for maintenance and growth of anemone clownfish Amphiprion percula. Isr. J. Aquac. Bamidgeh 65: 1-9.

Madhu, K., Rema, M., Gopakumar, G. & Sasidharan, C.S. 2006. Breeding, larval rearing and seed production of maroon clown Premnas biaculeatus under captive conditions. Marine Fisheries Information Service, Technical and Extension Series 190: 1-5.

Militz, T.A. & Foale, S. 2017. The “Nemo Effect”: Perception and reality of Finding Nemo's impact on the marine aquarium fisheries. Fish and Fisheries 18(3): 596-606.

Muhamad, N.A. & Mohamad, J. 2012. Fatty acids composition of selected Malaysian fishes. Sains Malaysiana 41(1): 81-94.

Ntantali, O., Malandrakis, E.E., Abbink, W., Bastiaansen, J., Chatzoglou, E., Karapanagiotidis, I.T., Golomazou, E. & Panagiotaki, P. 2023. Effects of short-term intermittent fasting on growth performance, fatty acids profile, glycolysis and cholesterol synthesis gene expression in European seabass Dicentrarchus labrax. Fishes 8(12): 582.

Oliveira, L.K., Pilz, L., Furtado, P.S., Ballester, E.L.C. & de A. Bicudo, Á.J. 2021. Growth, nutritional efficiency, and profitability of juvenile GIFT strain of Nile tilapia (Oreochromis niloticus) reared in biofloc system on graded feeding rates. Aquaculture 541: 736830.

Othman, M.F., Hashim, M., Eim, Y.M., Azmai, M.N.A., Iksan, N., Ho, G.C. & Merican, Z. 2017. Transforming the aquaculture industry in Malaysia. World Aquac. 48(2): 16-23.

Pauly, D. 1983. Some simple methods for the assessment of tropical fish stocks. FAO Fish. Tech. Pap., (234). Food and Agriculture Organization of the United Nations. hlm. 52.

Rahman, M. & Arifuzzaman, M. 2021. An experiment on growth performance, specific growth rate (SGR) and feed conversion ratio (FCR) of rohu (Labeo rohita) and tilapia (Oreochromis niloticus) in tank based intensive aquaculture system. Int. J. Aquac. Fish. Sci. 7: 35-41.

Roux, N., Logeux, V., Trouillard, N., Pillot, R., Magré, K., Salis, P., Lecchini, D., Besseau, L., Laudet, V. & Romans, P. 2021. A star is born again: Methods for larval rearing of an emerging model organism, the false clownfish Amphiprion ocellaris. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 336(4): 376-385.

Sahm, A., Almaida-Pagán, P., Bens, M., Mutalipassi, M., Lucas-Sánchez, A., De Costa Ruiz, J., Görlach, M. & Cellerino, A. 2019. Analysis of the coding sequences of clownfish reveals molecular convergence in the evolution of lifespan. BMC Evolutionary Biology 19(1): 1-12.

Wood, E.M. 2001. Collection of Coral Reef Fish for Aquaria: Global Trade, Conservation Issues and Management Strategies. Herefordshire: Marine Conservation Society. hlm. 80.

 

*Corresponding author; email: meilingkhoo@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next